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Abstract The atomistic kinetic approach of the DOCC
sites concept (meaning, very simpli®ed, that the dopant
migration in solids progresses via sites which are suitable
for occupation by dopant corpuscles summarized as
dopant-occupiable sites, i.e. DOCC sites) is here used as
a basis on which several di�usion models are thoroughly
analysed. Since it is able to cover all e�ects determining
dopant migrations, so that it may be valid in general, it
proves other statements on dopant transport to be in-
correctly formulated. Following this conception, Dar-
ken's equation leads to a link between the Fickian
di�usion coe�cient of an ideal solution and the activity
coe�cient of the non-ideal solution, which has up to
now been ignored. Contrasting with Darken's hypothe-
sis, Einstein's relation between the Fickian di�usion
coe�cient and the mobility of dopant particles proves
true even in cases of non-ideal solutions. The supposed
vacancy wind e�ect and the di�usion of dopant-defect
pairs as molecule-like joined complexes are shown to be
physically unrealistic. Orlowski's dopant ¯ux formula
proves false. Roth's and Plummer's model on oxidation-
enhanced di�usion in silicon is shown to involve incor-
rectnesses.

Introduction

Darken's equation (eq. (12) in [1]) formulates the dif-
fusivity of atoms of each component in a binary metallic
system as a function of independent mobility and ac-
tivity coe�cients. In contrast, the model which will here
be explained points out a strong link between these
terms. Since the connection between these parameters
has not yet been taken into numerical accounts, the

values that have been calculated in this way ought
eventually to be corrected.

Although di�usion processes have been known for
more than a century, and play an indispensable role in
modern semiconductor technology, several problems
remain to be solved [2±28]. Even in many cases of liquid
systems the distributions of solutes are more compli-
cated [29±32] than Fick's inferences from his H2O-NaCl
solution experiment [33], that di�usivities would be
constants. Therefore, also Einstein's di�usion model [34,
35] cannot be accepted as a generally valid statement,
because it is limited to Fick's result. From this point of
view, the di�usivity±mobility relation, which was de-
rived by Einstein in cases of liquid systems [34, 36], is
worth analysing for its use in solid-state di�usion
statements, because it adheres to the presuppositions of
Darken's equation.

Scrutinizing models on dopant transport in solids,
which di�er each from another, ®rst requires the de®ni-
tion of the basis on which they may critically be discus-
sed. For this purpose the DOCC sites concept is believed
to be the proper frame [25, 37, 38], because it takes into
account the local inhomogeneous distribution of sites,
via which dopant corpuscles move, summarized as
dopant-occupiable sites, i.e. DOCC sites. Unlike several
phenomenological thermodynamic approaches, which in
some cases involve even intuitive assumptions (pp. 196,
434 of [21]), the DOCC sites concept is free from hy-
potheses. Its atomistic-kinetic approach describes the
dopant transport process by the same mathematical
formula as for the simple vacancy mechanism [39, 40].
However, it extends the latter and takes into account all
punctiform sites, which are suitable for occupation by
dopant particles. DOCC sites may act not only as va-
cancies and interstices but also as entities which are
suitable for the residence of dopant particles (e.g. cor-
puscles together with dopants may form pairs and com-
plexes) [41±48]. Accordingly, the dopant ¯ux is
determined by the DOCC sites concentration and by the
dopant jump rate (i.e. the probability of dopant particles
to jump from their starting positions in the adjacent
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DOCC sites during a given time interval). The functional
dependencies of these two parameters on position are
crucial criteria for either Fickian di�usion (strictly
speaking, the constancy of di�usivities) or non-Fickian
dopant transport phenomena (involving dopant up-hill
migration and varying di�usion coe�cients [42]). From
this point of view, the DOCC sites concept may be valid
in general, whereas several other statements are limited
to special conditions or they are inexactly formulated.
Bardeen's atomistic kinetic di�usion model [43], which
considers in another theoretical way the result of Dar-
ken's thermodynamical statement [1], is shown below to
be based on an incorrectly expressed dopant ¯ux formula.

Other models and predications are also worth dis-
cussing. The oxidation-enhanced di�usion of dopants in
silicon [47] is inconsistently formulated. The vacancy
wind e�ect [49±51] appears as sheer hypothesis. The
di�usion of dopant-defect pairs believed to proceed as
joined complexes [48, 50, 52±56] is explained in such way
that the dopant particles may elementarily jump [57].
Orlowski's dopant ¯ux formula proves false, because the
gradient terms of vacancies and interstices involve
wrong signs [58±60].

Selected models of dopant transport processes

Darken's di�usion statement and Manning's dopant
¯ux formula

Firstly, a remark to the use of symbols in the current
paper. In order to avoid misunderstandings, which could
be caused by the use of symbols di�ering from each
other but meaning one and the same physical parameter,
the notation is preferentially retained for each article
being discussed. For instance, the dopant jump distance
is designated by k in Bardeen's di�usion model, but by a
in the DOCC sites concept. However, Darken's symbols
are preferentially used in this section to describe the
di�usion process in terms of the original paper.

Darken's equation (eq. (12) in [1]), which formulates
the di�usivity (Di) of the ith constituent in a binary
metallic system as a function of mobility (Mi), atom
fraction (Ni) and activity coe�cient (ci)

Di � kTMi 1� Ni
o ln ci

oNi

� �
�1�

presupposes the following conditions:

1. The sum (S) of the solvent concentration (C1) and the
solute concentration (C2) is a constant:
S � C1 � C2 � const.

2. The volume of the system is independent of the local
concentrations C1 and C2.

3. Resulting from the assumptions (1) and (2), the va-
cancy concentration is also independent of position
and local composition, which was taken into Dar-
ken's consideration.

4. Interactions between the two components, which may
change the migration of one of them, are neglected,
so that the non-Fickian dopant transport phenomena
are excluded from the consideration.

5. Following points (1)±(4), the dopant ¯ux (J2) is lim-
ited to Fick's Law: J2 � ÿD2 oC2=ox� �:

According to the thermodynamic understanding of
transport processes, the force e�ecting the migration of
neutral solute particles in a solvent is equal to the nega-
tive gradient of the potential energy of these entities (i.e.
Gibbs's chemical potential, usually called the partial free
energy). This means that for lC, the chemical potential
per solute atom, the average force (F2) acting on each of
these migrants amounts to F2 � ÿolC=ox. Accordingly,
the average migration velocity of a solute atom is equated
formally to the product of this force (F2) and the mobility
(M2) of the migrant. Hence the ¯ux density (J2) in atoms
of component 2 per unit time across a unit plane normal
to the direction of di�usion is described by the formula
J2 � ÿC2M2 olC=ox� �. Using Fick's Law [see point (5)
above], one obtains the expressions

D2
oC2

ox

� �
� C2M2

olC

ox

� �
�2a�

D2 � C2M2
olC

oC2

� �
�2b�

Using again the approximations that the speci®c volume
of the system as well as the sum (C1 � C2) are indepen-
dent of position and of composition, the atom fraction
N2 � C2=�C1 � C2� leads to

D2 � M2
olC

o lnN2

� �
�3�

From the de®nition of activity (a2), namely,
lC � kT ln a2, it follows (eq. (11) in [1]) that

D2 � kTM2
o ln a2
o lnN2

� �
�4�

and from the de®nition of the activity coe�cient,
c2 � a2=N2

D2 � kTM2 1� N2
o ln c2
oN2

� �
�5�

Equation (5) is identical with Darken's formula (eq. (12)
in [1]). Since the di�usion of component 1 is described by
a similar expression denoted by the corresponding sub-
script, the constancy of the sum (C1 � C2) leads to the
e�ective di�usion coe�cient (p. 194 in [1])

Deff
2 � N1D�2 � N2D�1

ÿ �
1� N2

o ln c2
oN2

� �
�6�

of constituent 2 in the binary alloy. Therein, the pa-
rameters D�1 and D�2 are individual di�usivities, which are
assumed to be given by tracer measurements. In such
investigations the di�usion of a tracer (i.e. a radioactive
isotope of the dopant component, which is added to the
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di�usion system) is believed to be determined both by
the chemical potential of an ideal solution as well as by
the constancy of mobility. Since the latter is assumed to
have the same value as in the case of the non-radioactive
isotope, Darken's formula has frequently been used in
order to estimate the chemical potential of a non-ideal
solution as function of concentration.

Darken's inference (p. 194 in [1]), that the Einstein
relation Di � kTMi� � would be applicable only to ideal
solutions, is worth discussing. The DOCC sites concept
points out that the di�usion coe�cient (D) of the Fick-
ian dopant ¯ux component is directly proportional to
the mobility �M� of the drift term, even in the cases when
these two parameters are functions of position, con-
centration, etc. Accordingly, deviations from the kT
value can only exist for the Deff=M ratio and only in that
case when the non-Fickian dopant ¯ux portions addi-
tionally ¯ow to the Fickian and the drift component
within in the total dopant ¯ux J tot � ÿDeff oC=ox� �.
Since Einstein himself limited his di�usion model [34] to
the local symmetry of probability functions of dopant
jumps in order to obtain Fick's constancy of dopant
di�usivities [33], statements other than the former are
required to be taken into considerations in order to in-
volve inhomogeneous host materials, asymmetric prob-
ability functions of dopant jumps, variable di�usion
coe�cients and non-Fickian phenomena.

Following Darken's intention, the dopant ¯ux �J�
would only be induced by the dopant gradient oC=ox� �,
whereas Manning's dopant ¯ux formula (eqs. (38, 42) in
[16]) points out a non-Fickian dopant ¯ux component

J vac grad � �DC
o ln Cv

ox
�7�

which is only caused by the vacancy gradient. Therein
the symbols mean: C = dopant concentration, Cv =
vacancy concentration and D = Fickian di�usion co-
e�cient [i.e. the coe�cient of that dopant ¯ux portion
which is only driven by the dopant gradient oC=ox� �]. In
order to scrutinize these two contrasting assertions, the
current paper aims both to elucidate the basic statements
for Darken's equation and for Fick's and Einstein's
constancy of di�usivities, as well as to understand the
activity coe�cient in the case of solid-state di�usion
when the sites suitable for occupation by mobile dopant
particles obey position-dependent distribution functions.
In other words: the discussion on several dopant trans-
port models here presented purposes to clarify whether
or not a link does exist between the Fickian variable
di�usion coe�cient (as explained above) of the tracer
species, which is up to now simply believed to be a
constant corresponding to an ideal solution, and the
activity coe�cient of the non-ideal solution.

Bardeen's deduction of Darken's equation

In order to corroborate Darken's result of a thermody-
namic continuum statement by means of a deduction

from another physical viewpoint, Bardeen [43] consid-
ered an atomistic kinetic approach of dopant transport
processes in solids. This model is based on following
conditions:

1. The transport process of each component in a binary
metallic system is mediated by vacancies.

2. The vacancies and the metal atoms are inhomoge-
neously distributed.

3. As a result of the concentration gradient in a non-
ideal solution, Gibbs free energy of atoms changes
with position, so that the potential barriers over
which di�usion takes place will not be symmetric.

Avoiding misinterpretations, formulae in this section
are written in Bardeen's symbols, referring to following
parameters:

NA, NB, NV = concentrations of constituents A and B
and of vacancies in the binary alloy

k = lattice constant = distance between adjacent crys-
tallographic planes = jump distance of atoms

kf; kb = forward and backward jump coe�cients,
respectively, for atoms of a constituent to jump
from their starting plane into vacancies of the
adjacent plane, so that kf and kb are propor-
tional to the corresponding frequency of jumps

x = position coordinate

This means that NA and NV are the concentrations
of A atoms and of vacancies on plane 1 (position x),
with gradients oNA=ox and oNV=ox leading to the
corresponding concentrations NA � k oNA=ox� �� � and
NV � k oNV=ox� �� � on plane 2 positioned at x� k� �. Ac-
cordingly, the ¯ux of A atoms ¯owing from plane 1 to
plane 2 (forward direction) is (eq. (23) in [43])

iAf � kfkNA NV � k
oNV

ox

� �� �
�8�

and from plane 2 to plane 1 (backward direction) (eq.
(24) in [43]):

iAb � kbkNV NA � k
oNA

ox

� �� �
�9�

The net ¯ux �iA� of A atoms is the di�erence �iAf ÿ iAb�,
which amounts to

iMA � k2 kfNAN 0V ÿ kbN 0ANV

ÿ �� k kf ÿ kb� �NANV �10�
where

NA � NA x� �; N 0A �
oNA

ox
; etc:

However, Bardeen's di�usion model has inconsequently
been developed. Contrasting with Eq. (10), the di�erence
�iAf ÿ iAb� is formulated as (eq. (25) in [43])

iBA � k2kA NAN 0V ÿ N 0ANV

ÿ �� k kf ÿ kb� �NANV �11�
The comparison of coe�cients of the ®rst term on the
right-side hand of the latter two relations leads to the
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equality kA � kf � kb, so that the second term expressing
the asymmetry of the jump rates vanishes. From this in-
consistent result, being in contrast to thepresuppositionof
asymmetric jumps, Bardeen has deduced two inferences:

1. The mechanism of di�usion via vacancies leads to
Darken's phenomenological equations if vacancies
are in local thermal equilibrium.

2. No gradient of vacancies is to be expected in the case
of di�usion of a radioactive tracer.

It must be remarked that Bardeen's conclusion is
imperfectly expressed. Determining the activity coe�-
cient of a non-ideal solid-state solution in dependence on
the solute concentration may assume Fickian di�usion
(meaning D = const.) of the ideal solution, but Bar-
deen's doctrine, that this decisive presupposition would
always automatically be satis®ed in the case of tracer
di�usion, proves false. As Masters's and Fair®eld's [44]
experiments of iso-concentration di�usion (giving the
surface concentration of the tracer equal to that of the
previously performed predi�usion) point out, the con-
centration pro®les of the radioactive As-76 isotope in the
As-predi�used silicon crystal di�er markedly from those
without predi�usion. Deducing from these measure-
ments, it is not certain, whether or not each di�usion
process would have abolished the gradient of vacancies
and provided their thermal equilibrium value for the
subsequent tracer di�usion. It is to be assumed that
entities altering the migration of the tracer may remain
from the processes before tracer di�usion and that other
ones may be created by the latter, so that Darken's and
Bardeen's criteria are not satis®ed.

Fick's view and Einstein's model of di�usion

The dependence of the dopant ¯ux on the dopant gradient
was ®rst formulated by Fick [33], guided by solute dis-
tributions in aqueous NaCl solutions. On the patterns of
Ohm's law for electric current ¯owandFourier's equation
for heat conductivity, Fick assumed that the solute con-
centration would act in a similar way as the voltage and
the temperature. Following this, the negative gradient of
the chemical potential of dopant particles is the force
which drives these entities to migrate through a continu-
ous solvent. Fick's law and the constancy of di�usivities
were ®rst theoretically founded by Einstein [34] with the
help of a model involving the decisive condition of sym-
metric probability functions of dopant jump distances.

The mathematical treatment of Einstein's model is
based on the following details. Denoting C�x; t� as the
dopant concentration C at position (x) and time (t), then
its amount will be altered to C�x; t � s� by the jumps of
the dopant particles which have reached the reference
position (x) from their starting points (x� X ) during the
time interval �t; t � s�, where X means the jump dis-
tances of the dopant particles. Provided that their
probability distribution (P ) is only a function of X , but is
independent of position, concentration, etc., the con-

centration C�x; t � s� at position (x) and time �t � s� is
given by the integral

C x; t � s� � �
Z�1
ÿ1

C x� X ; t� �P X� �dX �12�

Representing C x� X� � as Taylor series

C x� X� � � C x� � � X
oC
ox
� X 2

2

o2C
ox2
� � � � �13�

then Eq. (12) can be rewritten as the sum of integrals

C x; t � s� � �C
Z�1
ÿ1

P X� �dX � oC
ox

Z�1
ÿ1

X P X� �dX

� 1

2

o2C
ox2

Z�1
ÿ1

X 2P X� �dX � � � �
�14�

with C � C x; t� �. The standardizing conditionZ�1
ÿ1

P X� �dX � 1 �15�

as well as Einstein's decisive symmetry demand

P �X� � � P ÿX� � �16�
simplify the integrals of Eq. (14), so that C�x; t � s� be-
comes

C x; t � s� � � C x; t� � � x2

 �
2

o2C x; t� �
ox2

�17�

with

x2

 � � Z�1

ÿ1
X 2P X� �dX �18�

Since C�x; t � s� can, for small s time intervals, be ex-
pressed by

C x; t � s� � � C x; t� � � s
oC x; t� �

ot
�19�

then Eq. (17) leads to the expression

oC x; t� �
ot

� x2

 �
2s

o2C x; t� �
ox2

�20�

Following Einstein, the di�usion coe�cient D can be
interpreted as a limiting value

D � lim
s small

x2

 �
2s

�21�

the amount of which is constant for su�cient small s
intervals. Accordingly, D is identical with Fick's di�u-
sion constant [35].

Noteworthy is that Einstein himself [34] interpreted
the di�usivities as constants, although several investi-
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gations pointing to concentration-dependent di�usion
coe�cients of gaseous and liquid systems were already
known in his time [29±32]. The constancy of di�usivities
is inevitably connected with symmetric probability
functions of dopant jump distances, for which Einstein
excluded any interactions of these particles with each
other. Each asymmetric P �X � function alters the D value
as well as giving rise to an additional concentration term
on the right-hand side of Eq. (17). Following Einstein,
but exceeding his model, the asymmetric P�X � function
of jump distances �X � gives the mean value

xh i �
Z�1
ÿ1

X P X� �dX �22�

which may be understood as the linear displacement of
dopant migrations. Accordingly, Eq. (17) can be ex-
tended to

C x; t � s� � � C x; t� � � xh i oC x; t� �
ox

� x2

 �
2

o2C x; t� �
ox2

�23�

Comparison with Eq. (19) leads to the relation

oC x; t� �
ot

� xh i
s

oC x; t� �
ox

� x2

 �
2s

o2C x; t� �
ox2

�24�

This link between the di�erential quotients oC=ot, oC=ox
and o2C=ox2 may enable us to view non-Fickian dopant
transport phenomena in their true aspects. Since the
continuity relates oC=ot to the divergence of the dopant
¯ux �J�, oC=ot � ÿoJ=ox, the ®rst term on the right-
hand side of Eq. (24) points to a non-Fickian dopant
¯ux, which is not only caused by the dopant gradient
oC=ox. Accordingly, the quotients xh i=s and x2


 �
=2s are

variables, which may depend on position, concentration,
etc. In other words: each varying di�usion coe�cient
D � x2


 �
=2s in Eq. (24) is inevitably connected with

dopant ¯ux portions not obeying Fick's law. This result
agrees with explanations of atomistic kinetic dopant
transport models (see following section). Notable is that
the quotient xh i=s of Eq. (24) has the opposite sign to the
vFh i term of Peterson's formula (eq. (2.17) in [35]), where
vFh i designates the mean atom drift velocity from the
driving force caused by an electrical ®eld, thermal or
chemical potential gradient. From the viewpoint of
thermodynamics, the random walk of dopant particles
(being the presupposition for Einstein's symmetry de-
mand of dopant jump distances) is not satis®ed when
inhomogeneously distributed species interactions are
involved. The interactions are prone to destroy ran-
domicity and so are identi®ed as correlation e�ects
(chap. 2 in [51]).

Asymmetric probability functions of dopant jumps
are fundamentally included in models of dopant trans-
port in solids because host materials may non-uniformly
be changed by several e�ects. The mismatch of solute
atoms in solvent crystals leads to their deformations,
depending on the kind and concentration of the solute.
In several fabrication steps of modern semiconductor

technology, the silicon host crystal is further inhomo-
geneously altered by oxidation and nitridation, which
are also performed on outer surfaces. Besides the de-
formation of the adjacent crystal region by the coverage
layer, these operations abolish the thermal equilibrium
of vacancies and self-interstitials, which decisively in-
¯uence dopant transport processes in solids.

In order to avoid any deviations of vacancy and
self-interstitial concentrations from their thermal equi-
librium values, unusual experimental conditions are
sometimes needed. For example, Ghoshtagore's [45, 46]
investigations of donor and acceptor di�usion in silicon
refer to a special combination of details, namely, em-
bedded epitaxy zones acting as doping sources, inert gas
ambient during di�usion processes, and low-level con-
centrations (meaning intrinsic conditions). The resulting
dopant pro®les obey Fick's law and give di�usivities
independent of position in the total measured di�usion
zone of 3±4 orders of magnitude for dopant cocentra-
tions. These values are the lowest ones for Fickian dif-
fusion which have ever been obtained, so they are
interpreted to be the intrinsic di�usivities at thermal
equilibrium. Their dependence on temperature satis®es
the Arrhenius equation in the total investigated interval
of 1150±1400�C, from which the formation energy of
mono-vacancies mediating the dopant transport is in-
ferred to amount to 2.35 eV.

Summarizing these e�ects, both the concentration of
the sites mediating the dopant migration in solids as well
as the dopant jump rate (i.e. the probability of dopant
particles jumping into these sites during a given time
interval) are to be put as position-dependent parameters
into the basic statement in order to develop models of
dopant transport processes in solids, which may be valid
in general. From this viewpoint (see next section), Ein-
stein's symmetry of dopant jump distances and Fick's
constancy of di�usivities are to be understood as special
cases, when di�usion processes proceed in regions where
the entities mediating dopant transport processes are
uniformly distributed. Accordingly, the Fickian di�u-
sion coe�cient is directly proportional to the concen-
tration of these entities [6].

The DOCC sites concept

The DOCC sites concept is an atomistic kinetic de-
scription of dopant transport processes in solids, whose
main feature involves the inhomogeneous distributions
of entities mediating and/or in¯uencing the dopant ¯ux.
The mobile dopant species interact with the DOCC sites
in order to provide migrations of these particles. Unlike
phenomenological thermodynamic statements assuming
a continuous course of solid-state di�usion [21, 49, 50,
51], the atomistic kinetic approaches consider dopant
migration in solids to proceed by discrete jumps of do-
pant particles via distinct sites [9±16]. Putting this into
concrete terms, each dopant migration in solids requires
simultaneously to satisfy the following two conditions:
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1. Sites suitable for occupation by particles of the mo-
bile dopant species (meaning DOCC sites) must exist.

2. Particles of the mobile dopant species must have
su�cient energy to occupy DOCC sites.

Expressing condition (2) by a quantitative parameter,
the dopant jump rate is the probability of a dopant
particle jumping from its starting position in the adja-
cent DOCC site during a given time interval. Following
this, both the DOCC sites concentration and the dopant
jump rate, which completely determine the dopant ¯ux,
should be inserted as position-dependent functions in the
basic statement in order to develop an universally ap-
plicable dopant transport model. Since this mathemati-
cal feature is in principle able to take into account the
in¯uences of all entities and e�ects on dopant migra-
tions, the DOCC sites concept may be valid in general.

Since dopant movements in solids are determined by
several interactions between particles of the mobile do-
pant species and entities of host materials, numerous
transport models have been developed. Early papers on
the simple occupation of vacancies and interstices by
dopants [2±7] have decisively been corrected by John-
son's inference from activation energies that solute at-
oms would tend to trap ``holes'' (vacancies are meant by
Johnson) to form solute-hole molecules [8]. Accordingly,
the dopant-vacancy interactions are to be understood as
inversions and reorientations. Inversion means the do-
pant jumps into the adjacent vacancy, so that these two
entities change their sites each for the other, whereas the
vacancy moves around the ®xed dopant during the re-
orientation stage.

Many models of acceptor and donor di�usion in sil-
icon have adopted Johnson's insight to formulate the
¯uxes of these elements in terms of Fickian di�usion of
corresponding dopant-vacancy pairs [21, 52±56]. Mobile
pairs obeying Fick's law have also been presupposed in
cases of interstitial di�usion, where they are assumed to
move as joined silicon-interstitial/dopant-interstitial
combinations [48]. However, the di�usion of pairs in the
form of mobile molecule-like complexes as formulated in
several investigations (p. 434 in [21, 24]) may merely be
an intuitive assumption or an abstraction, because
places lodging such complexes are unknown [23]. Fair
(personal communication, 1995) has explained the As
di�usion in Si crystals via pairs in such a way that the
dopant particles would always perform their jumps in
elementary form, because the pairs would dissociate. He
states: ``The pair does not jump as a paired molecule.
Thus, I agree that everything is reduced to migration of
elementary particles''. Whether or not the dopant ¯ux is
carried by atoms, ions or pairs, both the DOCC sites
concentration and the dopant jump rate always refer to
the dopant particle species actually performing the do-
pant jumps.

Whatever the mobile particles which carry the dopant
¯ux may be, DOCC sites always act as such entities from
which and to which these mobilants may jump, even
though they form pairs, etc., in their residence places. By

this generalization the simple DOCC sites mechanism
can be mathematically formulated as the simple vacancy
mechanism, which has already been developed in great
detail [39, 40]. However, only the meanings of some
symbols are changed. The coupled DOCC sites mecha-
nism taking into account kick-out reactions [27] will not
be explained in this section.

The simple DOCC sites mechanism (one-dimensional
model, all quantities are written as scalars) is illustrated
in Fig. 1. Squares and circles symbolize DOCC sites and
mobile dopant particles, respectively. Simplifying the
problem, only one species of dopant particle and only one
type of DOCC site are considered, which are in the lattice
planes of a cubic crystal. The temporal change �oC=ot� of
the dopant concentration C on a lattice plane (position x)
is determined by four ¯ux components, which start from
or arrive at this plane, respectively. Each dopant ¯ux
component is carried by the dopant particles, which have
su�cient energy to jump from their starting plane into
the DOCC sites on the adjacent ®nishing plane.

For example, J (1) is the ¯ux portion moving from x
to x� a, where a is the lattice constant. This means that
if C�x� is the total dopant concentration on the lattice
plane x and b�x� a� the DOCC sites concentration on
the adjacent plane �x� a�, then only the relative fraction
C��; x� of all dopants determined by the product
C x� �b x� a� � can jump from x to (x� a) during a given
time interval. Accordingly, C��; x� means the corre-
sponding jump rate in the positive direction for these
dopant particles starting from x. Similar product state-
ments have already been proposed by other authors [2±
7, 9, 10, 20, 41], but they are limited by several condi-
tions. Designating K the dopant DOCC site neigh-
bourhood constant, the amounts of the four dopant ¯ux
components at the lattice plane x obey the relations

J�1� � a KC x� �b x� a� �C �; x� � �25�
J�2� � a KC�xÿ a�b�x�C��; xÿ a� �26�
J�3� � a KC�x� a�b�x�C�ÿ; x� a� �27�
J�4� � a KC�x�b�xÿ a�C�ÿ; x� �28�

The jump rates of dopant ions (charge q) resulting
from the in¯uence of the electric ®eld (E) are estimated at

Fig. 1 The simple DOCC sites mechanism
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C��� � x exp��DW =kT �; �29�
DW � �a=2� qE �30�
Here x is the isotropical dopant jump rate. The math-
ematical treatment is analogous to that of the simple
vacancy mechanism developed in [39, 40]. The one-di-
mensional version gives the temporal change
oC x; t� �=ot� � as the sum of the four components

a
oC x; t� �

ot
� �J 2� � � J 3� � ÿ J 1� � ÿ J 4� � �31a�

as well as the continuity equation oC=ot � ÿoJN=ox;
where JN x; t� � means the (resulting) net dopant ¯ux. The
approximations of the parameters b, x, C and E, which
may be functions of position x and time t, by Taylor
series including second-order terms, lead to the net (to-
tal) dopant particle ¯ux density

JN � a2 K ÿbxC0 ÿ bx0C�
�b0xC � bxC �qE=kT �� �31b�

The derivatives b0, x0 and C0 correspond to ob=ox, ox=ox
and oC=ox. Unlike other authors, the term ``di�usion''in
this paper always refers to the Fickian dopant ¯ux
component JF � ÿa2 K b x �oC=ox�. Therefore, each
position-dependent di�usion coe�cient of the ®rst term
(driven by C0) of the right-side hand of Eq. (31b)

DF�x� � a2Kb�x�x�x� �32�
requires necessarily to take into account the non-Fickian
dopant ¯ux portions caused by the gradients ob=ox and
ox=ox. Although the local variation of DF contrasts with
Fick's formulation and with Einstein's corresponding
explanation, DF is usually designated as the Fickian
di�usion coe�cient. Fick's well-known di�usion con-
stant implicitely assumes b and x being independent of
position.

Using Eq. (32) as well as the relations E � ÿoU=ox
and U � kT =q� � ln W, Eq. (31b) gives the expression

JN � ÿDF
oC
ox

1�
o ln Wx

b

� �
=ox

o ln C=ox

24 35 �33�

which can be simpli®ed to

JN � ÿDF
oC
ox

1� o ln Wx=b� �
o ln C

� �
�34�

Expressing the net (total) dopant ¯ux (JN) in an analo-
gous way to the Fickian component, JF � ÿDF oC=ox� �,
by the product

JN � ÿDN oC=ox� � �35�
then Eq. (34) leads to the e�ective (total) di�usion co-
e�cient

DN � DF 1� o ln Wx=b� �
o ln C

� �
�36�

Replacing in Eq. (1) the quotient Ni=oNi� � referring to
the atom fraction (Ni) of the ith species by the expression
1=o lnCi� � of its concentration (Ci), the comparison of
coe�cients of Eq. (36) with Darken's formula

Di � kTMi 1� o ln ci

o ln Ci

� �
�37�

gives the activity coe�cient (c) as a function

c � Wx
b

�38�

of the electric potential (expressed by W), the dopant
jump rate (x) and the DOCC sites concentration (b).
Following this statement, the chemical potential (lC) of
a constituent obeys the relation

lC � lC0 � kT ln Wx=b� �C� � �39�
where the reference potential lC0 is independent of po-
sition. Consequently, each position-dependent activity
coe�cient c � �W x=b� necessarily requires us to take
into account the local di�usion coe�cients DF and DN.

Darken's assumption (p. 194 in [1]), that Einstein's
relation D � kTM would be applicable only to ideal so-
lutions, is physically incorrect. Equation (31b) gives the
drift dopant ¯ux (JDrift) being driven only by the force
(qE) as

JDrift � a2KbxC �qE=kT � �40�
where the parameters b, x, C and E may be functions of
position in general. Inserting Eq. (32) into Eq. (31b) as
well as using the drift velocity (v) obeying the relations

v � JDrift =C �41�
v � MqE �42�
one may obtain an expression DF � kTM ; however, the
mobility M here depends on the position corresponding
to DF x� �. The DOCC sites concept shows that Einstein's
link between M and DF is true even in that case when the
demand on symmetrical distribution of dopant jump
distances (being the basis of Einstein's deduction [34] for
D = const.!) is not satis®ed because of the position de-
pendence of b and x [39, 40, 42]. Accordingly, DF may
also be a function of the position-dependent dopant
concentration, so that Darken's limitation turns out to
be incorrect.

Equations (32) and (38) permit us to develop the
dependence

c � 1

a2K
WDF

b2
�43�

of the activity coe�cient (c) on the Fickian di�usion
coe�cient (DF), which has hitherto been disregarded in
some phenomenological thermodynamic statements on
dopant transport processes in solids (e.g. [21]).

Putting the latter results into Eq. (37), we obtain the
e�ective di�usivity DN (as D denoted by Darken) as
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DN � DF 1� o
o ln C

ln
1

a2K
WDF

b2

� �� �� �
and therefore, because a2K is a constant of the host
material

DN � DF 1� o ln WDF=b
2

ÿ �
o lnC

" #
�44�

Equation (44) is quite di�erent from Darken's formula,
so that the fundamentals of these two relations should
be discussed. The atomistic kinetic approach of the
DOCC sites concept is based on the principles that the
dopant ¯ux in solids is only carried by the dopant spe-
cies, for which occupiable sites exist, and that these
mobile dopant particles must have su�cient energy to
jump into the sites suitable for occupation. Since the two
corresponding parameters ``DOCC sites concentration''
and ``dopant jump rate'' are taken into account as po-
sition-dependent variables, they permit us to involve all
e�ects in¯uencing dopant migrations. From this point of
view, the DOCC sites concept may be valid in general
for dopant transport processes in solids. This concept
shows the Fickian di�usion coe�cient to be determined
by the product of the DOCC sites concentration times
the dopant jump rate. Consequently, Fick's di�usion
constant requires that these two parameters are inde-
pendent of position. Since this condition is not always
satis®ed in solid-state di�usion processes, additional
aspects have to be considered. The basic relation [Eq.
(31b)] demonstrates that the position dependence of the
variable Fickian di�usion coe�cient is unavoidably
connected with the non-Fickian dopant ¯ux portions
caused by the gradients of the two main parameters.
Furthermore, the activity coe�cient is shown to be de-
termined by the quotient of the dopant jump rate di-
vided by the DOCC sites concentration. Since these
connections have been disregarded in Darken's formula,
it cannot generally be accepted. Determining the activity
coe�cient of a non-ideal solution by comparison of its
e�ective di�usion coe�cient (DN) with the Fickian dif-
fusion coe�cient (DF) of an ideal solution on the basis of
Darken's formula, as predicated in tracer investigations,
proves false. Equation (44) shows that such measure-
ments yield the DOCC-sites concentration, but not di-
rectly the activity coe�cient.

Since DF is due to the product b times x [see Eq.
(32)], methods are unknown up to now which could
determine separately each of these two parameters. The
DOCC sites concept is thought to be a suitable basis to
discuss other models. The generalized dopant ¯ux rela-
tion [Eq. (31b)] leads to the following inferences:

1. The so-called vacancy wind e�ect, which is sup-
posed to drive a dopant ¯ux component proportional
to the vacancy ¯ux (JV) [16, 21 (sect. 11.7.1)], proves
incorrect. The vacancy gradient ( C0V � b0 in the case
of a pure vacancy mechanism) of Eq. (31b) does not

inevitably mean a vacancy ¯ux, because the gradient
C0V could be induced by several e�ects. Of course,
vacancies must satisfy their own continuity equation,
taking into account the interactions of these entities
together with dopants and self-interstitials. The in¯u-
ence of the vacancy gradient on the dopant ¯ux is
independent of the way by which the former is caused.
The sole presupposition for this connection is the ex-
istence of the vacancy gradient, unconcerned whether
or not vacancies may ¯ow. From this point of view,
the vacancy wind e�ect is inferred to be sheer hy-
pothesis.

2. Orlowski's dopant ¯ux terms [57±59] involving the
gradients C0I and C0V of interstices and vacancies have
wrong signs. Equation (31b) has the opposite sign for
the b0 term (meaning C0I and C0V in Orlowski's formula)
compared to that for the Fickian C0 component, but the
signs of these components are equal to each other in the
originals. The plus sign of the b0 term in Eq. (31b) is
physically plausible. Provided that only this gradient
could exist and the other ones vanish, the dopant par-
ticles would preferentially ¯ow in that direction, in
which they can increasingly occupy sites. Accordingly,
the dopant migration would proceed to the maximum in
the b pro®le, where a dopant accumulation would de-
velop, to which these particles would tend to move. This
behaviour contrasts with Fickian di�usion, where the
dopants move downhill in their own concentration
pro®le.

3. Gossmann's and Poate's statement [22] of acceptor
and donor di�usion in silicon for integrated circuit
technology is limited to the Fickian dopant ¯ux com-
ponent. Although the vacancies and self-interstitials, via
which the dopant migration proceeds, deviate from their
thermal equilibrium values, the non-Fickian C0I and C0V
dopant ¯ux portions are ignored, so that the process
simulation of the authors is found to be inconsistent.

4. Equations (38) and (39) exceed fundamentally the
assumptions of recent thermodynamic considerations
[21, 60] that the activity and the chemical potential of
dopant particles would only be functions of their con-
centration (C). Following this, the dopant migration is
believed to obey Fick's Law, where the thermodynamic
factor (designated there as U) of the di�usion coe�cient
(D � MkT U, Eq. (5.9) in [60]) is assumed to describe also
the ``negative di�usion'' (dopant uphill migration). It
must critically be emphasized that this factor U obscures
the vacancy gradient term in the sum for the dopant ¯ux
in Manning's formula [16] and in Eq. (31b), which is
responsible for the dopant uphill migration. Any for-
mulations of the dopant ¯ux in terms of Fick's law
disregard the non-Fickian dopant ¯ux portions, which
are caused by the gradients b0 and x0. Accordingly,
product statements of the e�ective di�usion coe�cient
and the (total) dopant ¯ux, as formulated in terms of
Fick's law and the U factor, are not suitable to explain
the physical background of non-Fickian dopant trans-
port phenomena.
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Roth's and Plummer's OED model

The thermal oxidation of silicon causes a supersatura-
tion of self-interstitials and an undersaturation of va-
cancies, so that the di�usion of some dopants is
enhanced and that of others is retarded [48]. Since the
prediction of dopant pro®les in silicon plays an impor-
tant role in modern microelectronic device technology,
several models considering the in¯uence of non-equi-
librium process-induced point defects on dopant mi-
grations have been developed. One of them is the model
for the oxidation-enhanced di�usion (OED) of boron
and phosphorus in heavily doped silicon regions, which
has been proposed by Roth and Plummer [47]. The
following analysis of this model, based on the DOCC
sites concept, exhibits some details on the interactions
between dopant particles and entities mediating dopant
migrations, which may be helpful to elucidate the fun-
damentals in this matter. To avoid misinterpretations to
other designations, some symbols have been changed in
this section. The Roth±Plummer model is based on the
following three assumptions:

Firstly, dopant ions (boron and phosphorus) and
silicon atoms (self-interstitials) are asssumed to migrate
via interstices (interstitial sites), so that these entities
interact with each other.

Secondly, regardless of the missing minus sign (eq. (9)
in [47]), the self-interstitial ¯ux JI is believed to obey the
relation

JI � ÿDIC�I
o
ox

CI

C�I

� �
�45�

where CI, C�I and DI denote the self-interstitial concen-
tration, the equilibrium value of CI and the self-inter-
stitial di�usivity respectively. Neglecting recombination
e�ects, the self-interstitial continuity (eq. (10) in [47])

oCI

ot
� DI

oC�I
ox

o
ox

CI

C�I

� �
� C�I

o2

ox2
CI

C�I

� �� �
�46�

is deduced from Eq. (45), so that DI is treated as a
constant.

Thirdly, the phosphorus concentration CP is provided
to satisfy the continuity equation (eq. (11) in [47])

oCP

ot
� o

ox
DICP

CI

C�I

o
ox

ln CP
CI

C�I

n
ni

� �� �
�47�

where n and ni mean the electron concentration and the
intrinsic carrier concentration.

In order to examine thoroughly the model [47], the
following connections should be considered.

The ¯ux JI of the self-interstitials can be described by
the corresponding mathematical formalism of the DOCC
sites concept, similar to the dopant ¯ux. In the case that
H means the concentration of interstices (interstitial
sites) being suitable for occupation by self-interstitial
atoms, the condition of xI = const., for the self-inter-
stitial jump rate leads from Eq. (31) to the relation

JI � a2KxI ÿHC0I � H 0CI

� � �48�
where JI denotes the total self-interstitial ¯ux. Therefore,
the Fickian component, JI Fick � ÿDIC0I, which is driven
solely by the self-interstitial gradient C0I � oCI=ox

ÿ �
, is

connected with the self-interstitial di�usivity

DI � a2KxIH �49�
Inserting Eq. (49) into Eq. (48), one obtains the total
self-interstitial ¯ux

JI � ÿDIH
o
ox

CI

H

� �
�50�

Comparision of the coe�cients with Eq. (45) does yield
the equality C�I � H , but the meaning of DI is quite
di�erent. In order to obtain Eq. (46) from Eq. (45), DI

must be constant. However, according to Eq. (49), DI

increases linearly with H . Since the model [47] ignores
this detail, its results may not be consistent.

In the case of low donor concentration, the internal
electric ®eld E is given by

E � ÿ kT
q0

� �
n
n

0� �
�51�

wherein q0 means the absolute amount of an elementary
charge, so that the charge of an electron is qe � ÿq0.
Assuming, furthermore, that each donor is ionized and
its term has the charge q � �q0, the dopant ¯ux density
can be expressed as

J � ÿD C0 � C
x0

x
� C

n0

n
ÿ C

b0

b

� �
�52�

which is equivalent to the expression

J � ÿD C
o
ox

ln
C
b

x
x0

n
ni

� �
�53�

Therein, x0 denotes an arbitrary ®nite constant refer-
ence jump rate in order to provide a dimensionless ar-
gument in the ln function. The value of x0 is not critical,
and it cancels out because of the di�erentiation. Ac-
cordingly, the phosphorus ion ¯ux density obeys the
relationship

JP � ÿDPCP
o
ox

ln
CP

C�P

xP

x0

n
ni

� �
�54�

where C�P means the concentration of sites (i.e. interstices
in the Roth±Plummer model) suitable for occupation by
phosphorus ions, and xP is the jump rate of phosphorus
ions to occupy these suitable sites. Furthermore, CP

denotes the phosphorus ion concentration, and the dif-
fusion coe�cient DP refers only to the Fickian compo-
nent JPFick � ÿDPC0P. The latter is that portion of the
total ¯ux [Eq. (54)] which is driven solely by the gradient
C0P � oCP=ox. Equation (54) leads to the phosphorus ion
continuity

oCP

ot
� o

ox
DPCP

o
ox

ln
CP

C�P

xP

x0

n
ni

� �� �
�55�
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Comparison of the pre-ln coe�cient of Eq. (47) with
that of Eq. (55) gives the dependence of the phosphorus
di�usion coe�cient (DP) on the self-interstitial parame-
ters CI;C�I and DI of Eqs. (45) and (46) as

DP � DICI=C�I �56�
The connection with the DOCC sites concept formu-
lating DP as the product DP � a2KC�PxP leads to the
following two inferences:

1. The phosphorus jump rate xP would be equal to the
self-interstitial jump rate xI because of the relation
DI � a2KC�I xI [see Eq. (49) with H � C�I ]. However,
the equality xP � xI is physically doubtful.

2. The concentration C�P of sites being suitable for oc-
cupation by phosphorus ions is equal to the concen-
tration CI of sites being occupied by self-interstitial
atoms

C�P � CI �57�
Accordingly, self-interstitials may be considered to act
as DOCC-sites mediating the dopant ¯ux. This hy-
pothesis agrees with Hu's predication [48] for the case of
phosporus di�usion, that the di�using entity is a com-
plex of a phosphorus atom and a self-interstitial as a
pair, which could alternatively be viewed as a phos-
phorus interstitialcy.

However, the arguments of the ln functions of Eqs.
(47) and (55) exhibit a contradiction to Eq. (57). Re-
gardless of the jump rate xP, which is ignored in [47], the
concentration C�P would rise as the quotient C�I =CI,
which runs inversely to the C�P � CI identity of Eq. (57).
Consequently, further investigations seem to be needed
in order to solve this con¯ict and to develop consistent
models of dopant transport in silicon crystals.

Inferences from process-induced defects and effects
instead of thermodynamic phenomenological
assumptions

Since the Fickian di�usion as a consequence of the do-
pant concentration gradient irreversibly progresses, nu-
merous theoretical attempts have been made to interpret
also the mass ¯ows of multicomponent systems from the
viewpoint of the irreversible processes of thermody-
namics. The ®rst treatment in this matter was due to
Onsager [61, 62], who expressed the simultaneous ¯uxes
of three substances in the same solution by the phe-
nomenological relations

J1 � L11X1 � L12X2 � L13X3

J2 � L21X1 � L22X2 � L23X3

J3 � L31X1 � L32X2 � L33X3

�58�

The coe�cients Lij, etc. (in Onsager's terminology des-
ignated as conductances) obey the reciprocal relations

L12 � L21; L13 � L31; L23 � L32 �59�
The symbol J1 means the ¯ux density of the substance 1
relative to the solution, and the forces X1, X2 etc., are
given by the negative gradients of appropriate chemical
potentials. Accordingly, the cross-over term L12X2 refers
to that ¯ux component of substance 1 which is due to the
potential gradient of substance 2 induced by the corre-
sponding concentration gradient of the latter.

Noteworthy is that Onsager himself formulated the
phenomenological relations on the pattern of the linear
superposition of ¯uxes and forces (see also [63]), so that
his framework extends the results of Helmholtz [64] re-
ferring to the superimposition of electrical and chemical
potential gradients in electrolytes as well as the expla-
nations of Boltzmann [65] on thermoelectric phenomena.

Although in 1888 Nernst [66] had emphasized that,
even in the case of hydrodi�usion, Fick's linear law on
the di�usant ¯ux density had been found to be not valid
in general, nevertheless, Onsager's linear superposition
of Fickian ¯ux components is in some cases up to the
present time still assumed to govern mass transport
processes in solid-state solutions.

Condensing these results: the discontinuous process
of mass transport in a solid material, which proceeds by
discrete jumps of mobile particles via suitable sites, is
inadequately described by a relation which is taken from
continuous phenomena (e.g. conduction of heat), so that
the interactions between solutes and solvents are
ignored. The main discrepancies between the phe-
nomenological relations and other statements will be
discussed in the following.

Inferred from the Kirkendall e�ect, the vacancy
mechanism is favoured to govern mass ¯ows in solids
[67]. Accordingly, an atom can jump to a neighbouring
site if it is vacant. Di�usion in a binary metal alloy can
then be expressed by using di�erent di�usion coe�cients
for the two metals, where the lattice is a reference frame.
The principles of the irreversible thermodynamics of an
alloy with vacant sites are therefore assumed to be ap-
plicable to mass ¯ow phenomena, if the vacancies are
treated as one of the constituents of the alloy [67].

Following this, vacancies are considered to be the
third constituent in the binary metal system of Eq. (58).
Taking the lattice as a reference frame, as explained by
Bardeen andHerring [67], must be distinguished from the
barycentric system presupposed in several thermody-
namic phenomenological models. The decisive condition
of the latter, that the total number of lattice sites would
be conserved, gives the balance of ¯ows. Therefore, the
sum over all ¯ows of atoms in one direction is balanced
by an equal ¯ow of vacancies in the opposite direction. In
contrast to these ideal conditions, both the constancy of
the lattice sites as well as the constancy of the vacancies
were in 1948 critically estimated to be doubtful hypoth-
eses in some cases of solid-state di�usion [72].

Whenever vacancies are occupied by dopant particles,
the host material will in consequence of these interac-
tions be manifoldly changed compared to its pure state.
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The di�erence in atom volumes between solvent and
solute particles (so-called mismatch) may give rise to
strains in the lattice planes, so that even distant undoped
crystal regions may be deformed. The occupation of
vacancies by dopants also modi®es the balance between
the former and self-interstitials (i.e. host atoms at in-
terstices), so that these reactions may proceed far from
the corresponding equilibrium values of pure crystals
and may be able to alter other crystal regions. Accord-
ingly, the phosphorus di�usion from an embedded
phosporus-doped silicon zone, acting as the di�usant
source, into the bulk of the matrix crystal was found to
be enhanced by an outer phosphorus di�usion zone.
Since these two zones were isolated from each other by
an undoped silicon epitaxy layer which showed no ir-
regularities, the authors interpreted the e�ect by excess
vacancies, which are due to the dissociation of phos-
porus-vacancy pairs (so-called E-centres) developing at
the surface of the outer di�usion zone [68]. Crystal re-
gions may furthermore be changed by dopant-intersti-
tials being analogously located with self-interstitials at
interstices. Last, but not least, the creation, annihilation
and distribution of vacancies depend on their nearest-
neighbour particles.

Summarizing the foregoing in¯uences of dopants on
host crystals, two main e�ects should be distinguished
from each other: the lattice spacing and the sum over all
the sites (meaning vacant and occupied) on a lattice
plane may vary with the dopants. In other words: since
the reference volume, to which the concentration
amounts are related, is given by the distance between
lattice planes, its expansion may depend on the dopant
concentration itself. Accordingly, lattice planes, which
are located in crystal regions disturbed by position-de-
pendent dopant concentration pro®les, may migrate
with respect to an undisturbed crystal zone.

This connection between the consequences of pro-
cesses appears reasonable: those process-induced e�ects,
which are responsible for crystal deformations, for
changes of the lattice spacings and for migrations of
lattice planes, may also alter the total number of sites
(i.e. the sum over particles and vacancies) per unit vol-
ume. Thence the conservation of sites per unit volume,
which is assumed in several process calculations to be a
prerequisite (expressed by the vanishing sum over the
¯uxes of all entities, i.e. particles and vacancies, crossing
a lattice plane), may be only an approximate description,
when the crystal region is modi®ed by the actual process.
Therefore, the subsequent progress of a di�usion process
may be in¯uenced by the crystal changes, which have
been caused by the process itself during the preceding
course until the actual instant.

The foregoing details point out several problems in
the evaluation of dopant transport processes in solids,
which are more complicated than de®ning the mean-
volume frame of reference or the number-®xed coordi-
nate system as discussed elsewhere (p. 355 in [69]).

Both the linear dependencies of ¯ux components on
driving forces (phenomenological equations) and the

conservation of sites are the decisive relations of the
classical theory, which are additionally applied to the
thermodynamic framework of irreversible processes in
order to calculate mass ¯uxes in solids. Since the prin-
ciples of irreversible thermodynamics themselves do not
favour any transport mechanism, only the supplemen-
tary relations of isothermal mass migrations in solids are
here the subject of discussion (p. 4 of [70]).

Of course, non-Fickian dopant transport phenomena
in solids, having already been observed in some cases,
cannot adequately be formulated on the basis of linear
relations expressed analogicously to Fick's law. The
main problem, which remains to be solved, is the same
as for the DOCC sites concept, namely developing
functional dependencies on position of both the con-
centration of dopant-occupiable sites (designated as ac-
cessible sites in Philibert's terminology (p. 93 in [69]) as
well as the jump rate of dopant particles to occupy these
sites, when at distinct process times only local dopant
concentration pro®les deviating from standard solution
functions are known.

Involving the e�ect of concentration-dependent lat-
tice spacings in a dopant ¯ux relation requires us to
develop a new model. Accordingly, extension of the
DOCC sites concept to a more comprehensive statement
may be useful, since it has hitherto been limited to
constant distances between lattice planes. The ranges of
validity of dopant transport models and of other sup-
plements, which are added to the thermodynamics, are
only experimentally provable (p. 31 in [70]).

The discrepancy between the kinetic approaches and
the classical thermodynamic phenomenological state-
ments will in the following be explained on the basis of
the relations formulated by De Groot and Mazur [70].
The authors intentionally limited their explanations to
diluted mass systems, since even in 1984 they thought
that non-linear dependencies of ¯uxes on concentration
gradients had been insu�ciently investigated (p. 4 in
[70]). Thence the mean volume velocity and the bary-
centric velocity are neglected, and the volume of the
doped region is assumed to be independent of the do-
pant concentration, so that the di�usion coe�cient is
considered to be practically uniform. As a result of these
simpli®cations, the dopant ¯ux in a crystal is expressed
by the same formula as in the case of ¯uid media (pp. 34,
35 and 254±257 in [70]).

However, several investigations on dopant transport
processes in solids via vacancies point out that the linear
dependence of the ¯ux on the driving concentration
gradient is only satis®ed when both the concentration of
the vacancies as well as the dopant jump rate are locally
uniformly distributed [71]. The position-dependent va-
cancy distribution acts twofold on the dopant migration:
®rstly, the Fickian di�usion coe�cient, which is the
multiplication factor to the negative gradient of the
dopant concentration, proportionally increases with in-
creasing vacancy concentration; and secondly, the va-
cancy concentration gradient gives rise to a non-Fickian
dopant ¯ux portion. In other words: mass ¯uxes in
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solids, which are mediated by locally inhomogeneously
distributed dopant-occupiable sites, may obey rather
non-linear functional dependencies on concentrations
and gradients of all entities other than Fick's linear law.
Since, in 1948, non-linearities in dopant ¯ux relations
were discussed as being responsible for the Kirkendall
e�ect [72, 73], the thermodynamic phenomenological
statements resting on linear ¯ux relations may give only
approximate formulae to estimate dopant distributions
in solids. From this point of view, Darken's equation is
also questionable (pp. 211, 233 in [69]).

Point defects, via which the dopant migration takes
place, may have a drastic e�ect on it, when their actual
concentrations deviate from the equilibrium amounts of
the pure material (pp. 7, 119 in [51]). Inferring from sev-
eral investigations on acceptor and donor di�usion in
silicon, Orlowski [74] has repudiated the classical equa-
tions, which are usually applied to determine the
L-coe�cients of the phenomenological ¯ux relations.
Quotation: ``The problem is, of course, to determine the
matrix elements Lij. Their speci®c functional form cannot
be simply found from the Onsager reciprocal relation, the
Gibbs-Duhem relation, or the conservationof lattice sites,
because these relations are devoid of the intrinsic features
of the codi�usion dynamics'' (p. 401 in [74]). Orlowski's
statement involves ``dynamic e�ects giving rise to redis-
tribution of the interstitials by the impurity di�usion it-
self '' (p. 399 in [74]). Corresponding coupled dopant and
point-defect dynamics occur by interactions between
phosphorus atoms (or ions) and silicon interstitials, which
are assumed to be responsible for the experimentally
proved phosphorus uphill migration in the vicinity of lo-
cally damaged silicon regions (p. 732 in [75]).

The ¯ow direction of that non-Fickian dopant ¯ux
component, which is induced by the concentration gra-
dient of occupiable sites, to the position of maximal
concentration has also been proved in the case of hy-
drogen pro®ling in wet thermally grown silicon dioxide
layers on silicon substrates. Using the N-15 nuclear re-
action analysis (NRA) method to measure H concen-
tration distributions, a considerable H accumulation
(increasing with increasing N-15 ion irradiation dose)
has been found to take place in the dioxide-silicon
transition zone, where the maximal concentration of
appropriate trap sites is located. Since the analyzing N-
15 ion beam itself causes the changes of the H pro®le
actually being measured, the investigations undoubtedly
point out, that this non-Fickian H-¯ux component in-
duced by the gradient of occupiable sites must satisfy
two conditions in order to build up the H peak in the
transition zone: ®rstly, ¯ow uphill of the H peak to its
maximum position near the maximum position of trap
sites, secondly, exceed the Fickian H-¯ux portion
moving downhill in the H concentration pro®le.
Remarkably, during the NRA measurement the entire
dioxide-silicon system becomes impoverished in H by
out-di�usion from the bulk dioxide through the surface
into the ambient vacuum, although the H peak is si-
multaneously built up in the transition zone [76].

In addition, other authors, e.g. Lebon (p. 145 in [77]),
have thought the classical thermodynamics of irrevers-
ible processes to be in principle unable adequately to
describe processes taking place far from equilibrium, in
particular high frequency and short wavelength phe-
nomena. We infer from this predicament that solid-state
transport processes cannot be described su�ciently
within the classical thermodynamic-phenomenological
framework, when the gradients of host atoms, vacancies,
dopant particles, dopant- and self-interstitials foil the
equilibrium between these entities. Consequently, in all
cases of isothermal dopant migrations in solids, the basic
relations of the transport mechanism and the parameters
involved therein must be found as supplements to ther-
modynamic frameworks by theoretical and experimental
investigations (p. 1559 in [77]).

From the details discussed above, realistic isothermal
dopant transport models, which involve the defects and
e�ects of such technological important processes as
implantation, annealing, oxidation, etc., remain to be
developed as a basis for calculations of dopant distri-
butions. The kinetic theories are in principle the most
favourable ones for the physical understanding, because
they give a complete account of the transport mecha-
nism and lead to numerical amounts for the coe�cients
appearing in the phenomenological relations (p. 236 in
[78], p. 3 in [79]). Since the set of phenomenological re-
lations is an extra-thermodynamic hypothesis and it is
quite conceivable that in some particular cases the re-
lationships between ¯uxes and forces may not be linear,
the domain of validity of a dopant transport model is
only provable by experiment (p. 45 in [80]).

Using the terminology of thermodynamics, mass
transport phenomena progressing in crystals via inho-
mogeneously distributed occupiable sites should be
distinguished from Marko�an transition processes
between particular states of a system (p. 680 in [81]), so
that Pauli's master equation is also not applicable to
particle ¯uxes in solids (p. 298 in [82]). Pauli's formula,
which describes the transition of a physical system from
one state to another by the change in the probability of
the initial state with respect to time, is connected with
two decisive presuppositions [83]:

1. The change in the probability of a particular state
with respect to time is assumed to occur analogously
to radioactive decay.

2. The transition coe�cients (meaning the transition
probabilities per unit time) of these changes between
two groups of states are predicted to be independent
of the transition directions (symmetry theorem), from
which the master equation is inferred to govern irre-
versible processes in general, whether or not the sys-
tems are in equilibria (sect. 15.1, sect. A12 in [81]).

Following on from this, critical remarks must be
made to applications of Pauli's theoretical results to
dopant transport processes in solids. Appreciating the
Kirkendall e�ect, Seitz [84] in 1948 asserted that the
vacancy mechanism of dopant migrations in metals was
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to be strongly preferred over the direct interchange or
interstitial mechanisms (p. 1516 in [84]). Accordingly,
``... a given atom can move from one site to another only
when a vacant lattice site appears among its neighbors
and the given atom jumps into this neighboring posi-
tion'' (p. 1515 in [84]). Generalizing Seitz's explanation:
whenever a dopant corpuscle moves in a crystal by
jumping from a lattice plane (starting position) to an
adjacent site (®nishing position) of the neighbouring
plane, this ®nishing site must be suitable (meaning occ-
upiable) with respect to this jumping dopant corpuscle
and its actual energy. Thence the number of dopant
particles which leave a distinct lattice plane during a
given time interval is also determined by the number of
occupiable sites which are located on the adjacent
planes. Consequently, this situation is quite di�erent
from the radioactive decay of isotope particles occurring
independently of their adjacent entities, so that Pauli's
equation is not applicable to mass transport processes.

Extending Seitz's dopant transport model, which is
based on uniform vacancy currents throughout doped
crystal regions, to a more comprehensive concept also
involving position-dependent pro®les of dopant-
occupiable sites, one has to expect non-linear mass ¯ow
terms, whereas De Groot's and Mazur's basic relations
are limited to linear e�ects even in the case of aniso-
tropic crystals (pp. 34, 35 in [70]). From investigations
on non-equilibrium e�ects associated with mass ¯ows in
solids, Oldham and Blackburn [86] have summarized the
consequences when dopant corpuscles occupy vacancies
as follows: the vacancy concentration must vary con-
tinuously with position, or porosities must form or
dimensional changes in the solid material must occur
(p. 151 in [85]). From this point of view, the dopant
jump rate (i.e. the probability of a dopant particle
occupying a suitable site on the adjacent lattice plane
during a given time interval) may also depend on the
jump direction, when lattice planes are di�erently de-
formed, whereas this parameter is independent of the
transition direction in Pauli's relation. In addition, the
number of occupiable sites may also vary with position.

Last, but not least, both the concentration of dopant-
occupiable sites as well as the dopant jump rate are to be
understood as e�ective parameters, which compress the
whole mathematical description of the irreversible iso-
thermal dopant transport process to a short formula
explaining clearly both Fickian di�usion as well as non-
Fickian phenomena. The Fickian di�usion constant
characterizes that special case when the host material is
only inessentially changed by dopant particles and other
in¯uences. The decisive criterion for the validity of
models on mass ¯uxes in solids is the description of non-
linear dependences of ¯uxes on forces (non-Fickian
dopant ¯ux components). For this purpose, the DOCC
sites concept may be a useful model. However, deter-
mining its two parameters, the concentration of oc-
cupiable sites as well as the jump rate, as functions of
position, dopant concentration, etc., is a task which re-
mains to be accomplished.

Conclusion

The models which are here more thoroughly analysed
only incompletely re¯ect the multiplicity of contrasting
statements in the literature. Although in 1968 DeHo�
[12] suggested a reformation of Fick's ®rst law for solid-
state di�usion and replaced this traditional description
by an atomistic approach, even recent comprehensive
publications have con®ned their explanations to phe-
nomenological thermodynamic formulations based on
several Fickian ¯ux components and on intuitive as-
sumptions (pp. 196, 434 in [21]). Therefore discussion on
a generally acceptable model of dopant transport pro-
cesses in solids has been valid up to now. The DOCC
sites concept here used as a basis for the scrutiny of
dopant transport models is an atomistic approach,
which improves DeHo� 's one by the consideration of
the position dependence of two parameters determining
dopant migrations. From this point of view, it could be a
reasonable task for thermodynamic estimations to for-
mulate the dopant jump rate as a function of position-
dependent distributions of both (dopants and DOCC
sites) in order to develop a uni®ed model of dopant
transport processes in solids. Finally, it would be an
important step forward to deduce the dopant ¯ux rela-
tion of the atomistic model from the principles of ther-
modynamics in order to verify the phenomenological
assumptions on interactions between entities.
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